
Extreme Programming
Embrace Change

Introduction

Dr. Peter Lappo
www.smr.co.uk



©2002 smr.co.uk Introduction

2

Agenda

" Junior and Senior Programmer.
" Review of existing practice.
" How does XP improve current practice.
" Overview of XP.
" A new paradigm.



©2002 smr.co.uk Introduction

3

Classical Software Development

" Waterfall
� Analysis

� Design and Code

� Test

� Deployment

" Typical time from start to end 3-24 months.
" Plenty of reviews and checks in the process.
" Process analogous to building houses.



©2002 smr.co.uk Introduction

4

Pros

" Pros
� Industry standard process.

� Everyone understands the process.

� Approved by standards bodies.

� Plenty of books and training available.

� Management feel they are in control.

� The current paradigm.



©2002 smr.co.uk Introduction

5

Cons

" Cons
� Projects are often late, cancelled or don't deliver 

what users want.

� Status is hard to determine (99% complete 
syndrome).

� Heavy weight in terms of documentation and 
people.

� Project plans rarely reflect reality.

� Software is built to "frozen" requirements.



©2002 smr.co.uk Introduction

6

Traditional Risk (Fear) 
Management

" Traditional processes control risk by, 
� defining a fixed process with intermediate 

products,

� plan the project based on set of requirements,

� enforce QA checks on intermediate products,

� stop until intermediate products are correct.

" Traditional processes assume 
� you know what you want up front,

� cost of change increases rapidly with time.



©2002 smr.co.uk Introduction

7

Consequences of Current Practice

" Escalating costs.
" Long lead times.
" Lack of flexibility.
" Not responsive to changing business needs 

" Organisations must be agile in a changing 
and competitive world.



©2002 smr.co.uk Introduction

8

Some Options to Improve the 
Current Practice

" Become very heavy with the current process.
" Introduce modern methods and tools.
" Get ISO 9001 accreditation.
" Hire more QA staff to police the process.
" Hire more and better development staff.
" Beat each other up when we fail.



©2002 smr.co.uk Introduction

9

Alternatively Face Reality

" Virtually impossible to get the requirements 
right before writing code.

" "Frozen" requirements are often wrong.
" New requirements are often "discovered" 

during code and test.
" Things will change so, 

"Embrace Change."
Kent Beck, Extreme Programming Explained



©2002 smr.co.uk Introduction

10

XP Risk Management

" XP controls risk by,
� Short iterations focused on business priorities 

and working code.

� Constant communication and feedback

� High customer involvement.

� Self directing teams.

� Robust set of automated tests.

� Quality software that is easy to change.

� Light on documentation (but not too light).



©2002 smr.co.uk Introduction

11

XP Risk Management (con't)

" XP assumes
� you don't know exactly what you want up front,

� cost of change increases slowly with time.



©2002 smr.co.uk Introduction

12

Customer Benefits
" Working code in production earlier.
" Software that the business wants.
" Closure on features.
" Greater freedom to change at any time.
" Can stop the project at any time and still have 

a useful system.
" Robust set of automated tests for the entire 

life cycle.
" Accurate view of project status.



©2002 smr.co.uk Introduction

13

Developer Benefits

" Bigger role in planning and estimating.
" Job satisfaction due to greater responsibility.
" Encouraged to produce quality software.
" Greater sense of team work and involvement.
" Closure on requirements increases job 

satisfaction and reduces risk of cancelling the 
project.

" More fun!!



©2002 smr.co.uk Introduction

14

XP Values

" Feedback
" Communication

" Simplicity
" Courage



©2002 smr.co.uk Introduction

15

XP Practices

" The Planning Game. 
" Small Releases. 
" Metaphor. 
" Simple Design. 
" Testing. 
" Refactoring. 
" Pair Programming. 

" Collective 
Ownership. 

" Continuous 
Integration. 

" 40-hour Week. 
" On-site Customer. 
" Coding Standards. 



©2002 smr.co.uk Introduction

16

Coverage and Applicability

" XP covers most of the life cycle from 
requirements capture to code and testing.

" Excludes feasibility studies and deployment.

" Applicable to most types of small to medium 
sized (12 people).

" Especially projects with uncertain or fluid 
requirements.



©2002 smr.co.uk Introduction

17

Maturity
" XP has been practised to the extreme for 

several years.
" 9 books on XP including an article in the 

Economist.
" Several international conferences.
" Support via discussion groups.
" Training and mentoring available.

" In fact it is just best practice.



©2002 smr.co.uk Introduction

18

XP : A New Paradigm?

" XP is a quality and people centric process.
" Self directing teams working together.
" Less "political".
" Comparable to Volvo way of building cars.

" Potential rewards are high.
� Customers with flexible software addressing 

business needs.

� Happy and fulfilled workers.



©2002 smr.co.uk Introduction

19

Software Development as a 
Factory

" Current practice assumes software 
development is like a factory production 
process.
� feed raw materials in (requirements)

� out comes a product (software)



©2002 smr.co.uk Introduction

20

Software Development as a 
Factory Design Process

" Software Development as a Factory is an 
inappropriate analogy

" Developing software is actually more like the 
creative process of designing a factory.

" Production process analogy causes a lot of 
strain between management and developers.
� We are late, lets hire more people.

� Design has finished now lets write the code.



©2002 smr.co.uk Introduction

21

Agile Software Development

" Light weight methods similar to XP e.g.
� Crystal

� Scrum

� DSDM

" Include agile software development in the 
scope of the group.



©2002 smr.co.uk Introduction

22

 

End


