
Extreme Programming
for Solo Projects

Dr. Peter Lappo
peter.lappo@smr.co.uk

www.smr.co.uk

www.smr.co.uk©2005

Page 2

Agenda

● Why Methods?
● What is Extreme Programming (XP)
● XP Risk Management
● Characteristics of Solo Projects
● Applying XP to Solo Projects
● Case Study
● Conclusion and Questions

www.smr.co.uk©2005

Page 3

Why Methods
● There is uncertainty (risk) in
– Requirements
– Schedule or resources
– Development
– External factors

● Lack of discipline
– Scope and requirements creep
– Gold plating

● Others

www.smr.co.uk©2005

Page 4

Risk Management

● In essence software and project
management methods are simply risk
management tools.

● A set of practices and tools to help the
project deliver business value within
economic constraints.

www.smr.co.uk©2005

Page 5

What is Extreme Programming

● XP consists of:
– four values.
– approx 12 practices that complement the values.

● different “gurus” have different practices!
● cool or confusing?

www.smr.co.uk©2005

Page 6

XP Values

● Feedback
● Communication

● Simplicity
● Courage

www.smr.co.uk©2005

Page 7

XP Practices

● The Planning Game
● Small Releases
● Design Metaphor
● Simple Design
● Testing
● Refactoring
● Pair Programming

● Collective
Ownership

● Continuous
Integration

● Sustainable Pace
● On-site Customer
● Coding Standards
ref. Kent Beck

www.smr.co.uk©2005

Page 8

XP Risk Management

● How does XP manage risk?

www.smr.co.uk©2005

Page 9

Short Iterations
● Typically 2 weeks long.
● Customer defines what to deliver.
● Easy to change focus at each iteration.
● Deliver code not documents.
● Release cycle 3-4 months.

● Customer is in control.
● Customer always gets something useful.

www.smr.co.uk©2005

Page 10

Customer Involvement

● Customer and developer dialogue during
planning.

● Customer and developer dialogue during
development.

● Software meets customers needs.
● Customer is in control.

www.smr.co.uk©2005

Page 11

Self Motivated Teams
● Teams work together on,
– Estimating and task breakdown.
– Design and coding.

● Software developed in pairs – but not always.
● Daily stand-up meetings to review progress.

● Two heads are better than one.
● Less reliance on "key" personnel or experts.

www.smr.co.uk©2005

Page 12

Automated Testing

● Automated tests at unit level.
● Tests at acceptance test level to prove

requirements.
● Tests become the detailed requirements.
● Test first design.

● Tests are the critical enabler of change.
● Impact assessment easier.

www.smr.co.uk©2005

Page 13

Software is Easy to Change
● Refactoring simplifies code and improves

design.
● Test first design forces better structure.
● Simple design.
● Collective ownership of code.

● Makes software easier to change and
understand.

● No “no go” areas.

www.smr.co.uk©2005

Page 14

Light on Documentation

● Focus on delivering working code.
● Only produce documentation that adds value,
– Such as overview documents.

● Reduces workload.
● Deliver real business value.

www.smr.co.uk©2005

Page 15

Feedback and Control

● Customer decides what goes in each
iteration.

● Dialogue during iteration.
● Collect stats on performance.

● Fine degree of customer control.
● Estimates improve with time.

www.smr.co.uk©2005

Page 16

XP Risk Management
● XP reduces uncertainty in
– Requirements
– Schedule or resources
– Development
– External factors

● XP is disciplined
– Reduces scope and requirements creep
– Reduces gold plating

www.smr.co.uk©2005

Page 17

Benefits

● Valuable code in production early.
● Easier for the customer to change their

minds.
● Robust set of tests for the entire life cycle.
● Accurate view of project status.
● Closure on features.

www.smr.co.uk©2005

Page 18

Characteristics of Solo Projects

● Solo projects will have varying degrees of
– customer involvement
– other developer involvement

● Other factors tend to remain constant.
● Two types
– customer driven
– self motivated (no customer)

www.smr.co.uk©2005

Page 19

Customer Involvement

● Customers may be
– deeply involved, completely absent, or

somewhere in between.
● As customer involvement tends to zero so,
– Feedback and communication reduces.
– Ownership of user stories passes to the

developer and is less likely to be correct.
– Harder to assess progress.

www.smr.co.uk©2005

Page 20

Developer Involvement

● Other developers may be involved indirectly
– occasional pair programming with colleagues
– peer review
– support and help via Internet or work place.

● As developer involvement tends to zero, so
– fewer unit tests
– discipline looser
– design could be less understandable

www.smr.co.uk©2005

Page 21

Characteristics of Solo Projects

Other Developer Involvement

Customer Involvement

Higher Risk of
Project Failure

Lower Risk of
Project Failure

www.smr.co.uk©2005

Page 22

Applying XP to Solo Projects
● Solo projects need a customer
– developer must play the role of the customer
– must be critical from a “customer” perspective in

terms of requirements, usability etc.
– no problems scheduling customer meetings !!

● Solo projects need developer help
– don't stop learning
– sign up to discussion groups
– find someone to peer review

www.smr.co.uk©2005

Page 23

XP Show Stoppers

● XP or agile software development is not easy
to use on any project.

● Enhancing a system using XP is not easy
especially if there are no automated tests.

● Not recommended for safety critical systems.
● Not easy to apply to fixed price projects but it

can be done.

www.smr.co.uk©2005

Page 24

Requirements or User Stories
● User stories (aka use cases) are used to

capture requirements in XP.
● XP doesn't have a lot to say on the process

of creating user stories.
● If you have a customer specification break it

up into stories. It will be more manageable
and easier to measure progress.

● If you don't have a specification brain storm
the stories over an hour or two. Chances are
you'll capture most of them.

www.smr.co.uk©2005

Page 25

User Stories (more)

● User stories shouldn't be take longer than
five days to implement at the most.

● Break up big stories into smaller ones.
Measuring progress and testing become
easier.

● User stories are usually written by
customers, but if you do write your own
stories get them reviewed by a tutor, friend or
colleague.

www.smr.co.uk©2005

Page 26

Analysis and Design

● XP is not a great fan up big up front analysis
and design as models often turn out to wrong
in practice.

● However, some analysis and design is useful
to get a better understanding of the problem
and determine the overall shape of software.

● Further analysis and design is done as part
of each story implementation.

www.smr.co.uk©2005

Page 27

XP Practices for Soloists

● The Planning Game
● Small Releases
● Design Metaphor
● Simple Design
● Testing
● Refactoring
● Pair Programming

● Collective
Ownership

● Continuous
Integration

● Sustainable Pace
● On-site Customer
● Coding Standards
ref. Kent Beck

www.smr.co.uk©2005

Page 28

The Planning Game
● The planning game allows the customer to

define the business value of desired features,
and uses cost estimates provided by the
programmers, to choose what needs to be
done and what needs to be deferred.

● Stories are used to define XP projects.
● The planning game is run at the start of each

iteration.
● The effect of planning game is to steer the

project to success.

www.smr.co.uk©2005

Page 29

The Planning Game (more)

● Without a customer steering is much harder.
● The planning game can be faked by asking

your customer or yourself to prioritise the
user stories.

● Always ask yourself what “business value”
the feature is providing.

● Don't include anything that is not adding
value. e.g. its all too easy to fiddle with a
screen design to make it look “nice”.

www.smr.co.uk©2005

Page 30

Small Releases
● XP teams put a simple system into testing as

soon as possible, and update it frequently on
a very short cycle.

● Iterations are typically 2-3 weeks.
● Releases are typically 2-3 months.
● Iterations should be viewed as mini software

projects from analysis to test and delivery.

● This can easily be done by a soloist.

www.smr.co.uk©2005

Page 31

Design Metaphor

● XP teams use a common "system of names"
and a common system description that
guides development and communication.

● There may be more than one metaphor.

● This can easily be done by a soloist as it will
help in maintenance.

www.smr.co.uk©2005

Page 32

Simple Design
● The delivered program should be the

simplest program that meets the current
requirements.

● There is no building "for the future".
● Instead the focus is on providing business

value.
● Good design is simple design.
● Complex designs are harder to understand

and riskier to change.

www.smr.co.uk©2005

Page 33

Simple Design (more)
● Of course it is necessary to have good

software design.
● In XP design happens during the planning

game, when the story is being implemented
and post implementation through "refactoring".

● Soloists have to be especially careful in
creating simple designs as no one is
reviewing their efforts.

www.smr.co.uk©2005

Page 34

Testing
● XP teams focus on validating the software.
● Programmers develop software by writing a

test first then coding to make the test pass.
● Unit tests should be automated.
● Expect at least 50% of your code to be unit

tests.

● Soloists can easily write automated unit tests
as these are developer tests.

www.smr.co.uk©2005

Page 35

Testing (more)

● Customers provide acceptance tests that
enable them to prove their desired features
exist.

● Customer acceptance tests are more difficult
for a soloist especially if there is no customer
or the customer cannot write them.

● Automate customer acceptance tests if you
can.

www.smr.co.uk©2005

Page 36

Refactoring

● XP teams improve the design of the system
throughout the entire project.

● This is done by keeping the software clean:
without duplication, with high communication,
simple, yet complete.

● A very powerful design technique but you
really need unit tests to prove your software
still works.

www.smr.co.uk©2005

Page 37

Pair Programming

● XP programmers write production code in
pairs, two programmers working together at
one machine.

● Pair programming has been shown to
produce better software than programmers
working alone, but costs can be an issue.

www.smr.co.uk©2005

Page 38

Pair Programming (more)

● Soloists can't pair programme, unless
perhaps:-
– you ask someone to discuss a software problem
– commit your code to open source
– post to a discussion group

– people are always willing to help

www.smr.co.uk©2005

Page 39

Collective Ownership

● All the code belongs to all the programmers.
● This lets the team go at full speed, because

when something needs changing, it can be
changed without delay.

● Not applicable to a Soloist.
● You own all the code!

www.smr.co.uk©2005

Page 40

Continuous Integration
● XP teams integrate and build the software

many times per day.
● This keeps all the programmers on the same

page and enables more rapid progress.

● Not applicable to a Soloist.
● You are the only person working on the

software!
● But don't forget to use a version control system.

www.smr.co.uk©2005

Page 41

Sustainable Pace

● Tired people make more mistakes.
● Do not over work unless you really have to

meet a deadline (like a presentation).
● Better still ensure essential stories are

developed at the beginning and defer non-
essential stories to the end.

● Drop non-essential stories if you run out of
time.

www.smr.co.uk©2005

Page 42

On-Site Customer

● An XP project is steered by a dedicated
individual who is empowered to determine
requirements, set priorities, and answer
questions as the programmers have them.

● The effect of the customer being there is that
communication improves, with less hard-
copy documentation - often one of the most
expensive parts of a software project.

www.smr.co.uk©2005

Page 43

On-Site Customer (more)

● This is a big issue for soloists as
communication is one of the keys to
successful software implementation.

● If you don't have a customer try and fake a
customer as best you can.

● There is a risk your software won't be as
good without the adequate feedback so try
and release to users as soon as practical.

www.smr.co.uk©2005

Page 44

Coding Standards
● For a team to work effectively in pairs, and to

share ownership of all the code, all the
programmers need to write the code in a
consistent way, with rules that make sure the
code communicates clearly.

● Even though this is a group practice its still
good practice to have coding standards.

● If your software is successful someone else
will read it one day, so follow industry norms
and don't invent your own standards.

www.smr.co.uk©2005

Page 45

Case Study
Trading Gateway Development

● System to route and translate trade messages
to and from a stock market.

● “Real-time” and written in Java.
● A gateway feeding orders and trades to an

order manager from a sales system.

www.smr.co.uk©2005

Page 46

Case Study - Development of a
Share Trading Gateway

● Practices used – without anyone realising!

– The Planning Game
– Small Releases
– Design Metaphor
– Simple Design
– Testing
– Refactoring
– Pair Programming

– Collective
Ownership

– Continuous
Integration

– Sustainable Pace
– On-site Customer
– Coding Standards

www.smr.co.uk©2005

Page 47

Conclusion

● Using XP practices is possible on solo
projects but its not strictly XP. But do you
care?

● Being an XP soloist is just like being a soloist
in a band. To get good results it is
– hard work
– requires discipline
– needs lots of practice

www.smr.co.uk©2005

Page 48

Summary and Questions

● A lot of value can be gained on a solo
project from:-
– short iterations (small releases)
– simple design
– refactoring
– automated testing
– talking to others

www.smr.co.uk©2005

Page 49

The End

