
No Pain, No XP
Observations on Teaching and Mentoring Extreme Programming

to University Students

Dr Peter Lappo
Systematic Methods Research Ltd

Greylands House.
Hove, E.Sussex
BN3 6TD, UK

+44 1273 544160
peter.lappo@smr.co.uk

ABSTRACT
This paper describe how a group of Masters students at
Brighton University were taught Extreme Programming
(XP) and applied their knowledge to a 12 week project to
produce a web based resource management application.

The teaching, project, tools, architecture and use of XP are
described and observations made on each.

The paper concludes by saying:

1. practical XP experience is vital and XP should be
taught alongside a significant practical project that is
supported by experienced mentors;

2. experience with other methods is beneficial to fully
understand and appreciate the benefits of XP.

Keywords
Extreme Programming, XP, Teaching, Mentoring,
Experience.

1 INTRODUCTION
In the summer of 2001 I taught an extreme programming
(XP) [1] class to a group of Masters students and some of
their lecturers at Brighton University. After the classes I
mentored the students through a web based human
resources application I wanted for my company. The
objective of the exercise was three fold,

ï To understand extreme programming better.
ï To teach the students about extreme programming.
ï To get some working software.

The later objective has always been elusive when dealing
with the results of student projects.

This paper describes my experiences and reflects on some
of the issues raised.

2 THE PROJECT
Teaching and Mentoring
There were formal XP teaching sessions before the project
started covering the whole XP process with detailed
session on the planning game, software design, and unit
and acceptance testing. Class practicals were included
when possible. Refactoring was not covered in detail.

Following the XP classes I taught the students the basics
of Java Servlets [5] and Java Server Pages (JSP) [4] as I
wanted the application to be web based and this seemed
the natural choice as I am experienced with JSP and
Servlet technology.

Project
The project lasted 12 weeks which included two weeks of
writing up at the end. The objective was to apply XP to the
maximum extent possible using two week development
iterations. I was the customer as well as the XP mentor
and the students were the development team.

The aim of the project was to develop a human resources
application consisting of screens to enter working history
and qualifications, coupled with screens to search and
select people from a list of candidates.

Due to real-world constraints the customer and mentor
could not be present 100% of the time. In practice I was
probably with the students on average twice a week for
about 3 hours.

To facilitate communication I set up a Wiki [13] to
document the user stories and any comments raised by
myself or the students. We also used email extensively.

Tools
The project used JBuilder [2] as its interactive
development environment, Tomcat [3] for the web server
and Servlet engine, Castor [4] for object relational
mapping and MySQL [5] for the relational database. All

the software was "free", that is, either community edition
or open source.

Each student had their own workstation and developed
from a common set of code, but we did not use a
configuration management tool. Each workstation had its
own relational database to allow students to work
independently.

JUnit [8] was used for unit testing and HttpUnit [3] for
acceptance testing. The unit tests were written by students
whereas acceptance tests were written by the customer.

Architecture
An early decision was made to use an architecture based
on Java Servlets as the human interface had to use a web
browser.

The Model View Controller (MVC) design pattern [11]
was employed where the Servlet is the controller, Java
beans are the model and the view is a JSP page. The Struts
framework [11] was reused to save some programming
effort as it supports MVC.

The html at the front was kept as simple as possible
avoiding the need to use Java script which simplified
testing.

All the data was stored in a relational database but rather
than using direct database access it was decided to use an
object relational mapping tool called Castor [4]. The
intention was to speed up the development process.

3 OBSERVATIONS
Teaching and Mentoring
The teaching was a mixture of formal lectures and
practical sessions involving the students. At first the
students were skeptical of XP as they had just been
through an intensive year during which a lot of emphasis
had been placed on up front design using waterfall
methods. Even my industrial experience using waterfall
did not seem to convince them of XP's applicability.
Although they warmed to the method as the project went
on. Interestingly their lecturers were more receptive even
though they were the ones teaching them traditional
techniques. The impression seemed to be the more
experience a person had of developing software in teams
the greater was their appreciation of XP.

Mentoring was vital to the success of the project as this not
only reinforced the XP practices and ensured there was no
misunderstandings about the method, but it was also vital
in solving technology problems encountered by an
inexperienced team.

Project
The planned two week iterations did not proceed as
expected. This was primarily due to the fact we wanted to
use the first iteration to create a single thread through the
system to develop and test the architecture. Unfortunately
web development using Java is not easy when you are not

familiar with the technology. The role of the mentor at this
stage was vital not just to encourage the students to stick
with XP but also to help with the technology.

Once architectural problems had been resolved the project
went more smoothly and a minimal human resource
application was delivered to the customer's satisfaction. It
has to be said that despite the fact the students did not
have much experience with Java nor with Servlets and JSP
their efforts were considering very satisfactory.

In retrospect a simpler problem could have been chosen,
but then we would not have delivered any software as
promised to the customer. The disadvantage of a simple
problem such as a roman number converter, is that
somehow it is not real enough. The consequence is that
students loose confidence after they return from their
course because some of the subtle aspects of XP have not
been explored. When applying XP in a more complex
project an XP mentor becomes essential. In fact it is
surprising that so few training companies follow up
training with mentoring. Could this be they don't have the
necessary experience to mentor the subject in depth?

Tools
Quite a complex set of tools were used which again
presented the students with a steep learning curve.
However, the tools did not present barriers to progress and
were essential in helping students write Java. The lack of a
configuration management tools proved to be a serious
failing as common ownership of code and continuous
integration were harder to achieve and easier to ignore.

Due to the complexity of the architecture debugging Java
Servlets and JSP was difficult. Debuggers were used but
proved to be very slow even on fast machines. Unit testing
using JUnit [8] and acceptance testing with HttpUnit [3]
proved to be much more useful in solving problems.

Architecture
A lot of XP material seems to be quite dismissive of
architecture [1] or say that it can be evolved [7]. Much of
the newsgroup / wiki discussions also appear to
recommend an evolutionary approach to architecture.

Based on my experience and the experience of this project
I believe there is a certain amount of wisdom in these
recommendations especially if it discourages the formation
of an infrastructure team or redundant code. However, it is
a fact of programming life that some kind of architecture
must be chosen, either because the customer has specified
it or because the project cannot progress without it.

Take the case of the project discussed here. It had a user
requirement to be Web enabled. Consequently some
method was required to achieve this and when a decision
was made to use Java the use of Servlets and JSP became
the obvious choice. Once this step had been taken it was
obvious to look around and see what tools and libraries
would help. Hence the decision to use Struts which speeds

2

up web application development by reusing code.

Another architectural decision that was taken early in the
project was the use of the Castor object relational mapping
library. This library is very interesting as it removes much
of the drudgery associated with database development. In
simple terms all that is required of the programmer is to
write a Java class with get and set functions, as you would
do when developing a business object, write a mapping file
to map Java object fields to a database table and column,
and then use the Castor interface to save and restore
objects from the database.

The Castor library has the obvious advantage of
simplifying database access, but because it eliminates
database logic from the business objects it is possible to
write unit tests that just use the business objects without
using a database. Alternative strategies have used mock
objects to test business objects without the database [9].
Unfortunately this Castor feature was not exploited in this
project but will be explored in the future.

One very useful exercise that was not completed due to
lack of time was extracting project specific design patterns
for this mix of technologies. These would have helped the
project by speeding up the development of other
functionality.

While I'm not advocating writing infrastructure code and
potentially creating redundant code I believe architectural
choices must be made relatively early in the project, at the
very least a programming language must be chosen which
in itself will force other architectural decisions. In addition
existing infrastructure solutions should be examined as it
is often more cost effective to reuse code rather than
reinvent it. Finally when working with teams of more than
about 2-3 people a basic architecture is required to provide
a framework for developers to work within. Of course
decisions made early in the project should still be subject
to refactoring like any other code decision.

Extreme Programming
Of course the main reason for the project was to teach XP.
There were varying degrees of success with the XP
practices [1].

The Planning Game
This was probably the most successful part of the project.
It brought requirements issues into open discussion and
focused attention on each two week iteration. Neither
students nor lecturers had any problems with this practice.

Small Releases
Two week iterations were used for development with some
degree of success. Unfortunately some of the early
iterations achieved much less than expected due to
unfamiliarity with technology. With a more experienced
team this would have been less of an issue, but
nevertheless this highlights the amount of time needed to
start a more complex project.

Metaphor
Nobody really understood this practice which is hardly
surprising. We eventually settled on a concert booking
metaphor. With more experience of software development
the idea of metaphor would have been more relevant.

Simple Design
The interesting thing about short iterations is that it forces
simple design on the software simply due to time
constraints. None of the team members used UML or other
techniques to design their software, even though the rest of
the MSc course focuses on design.

Testing
Everyone agreed that testing was a good idea, especially
test first design. In practice a lot less testing was done than
should have been. One difficulty was that unfamiliarity
with technology meant some experimentation was
necessary to solve a problem, and inevitable tests were not
carried out.

Testing is one of those things everyone agrees should be
done but not many people actually do it. In a less
disciplined student environment testing becomes secondary
to working code. Furthermore most students have not had
the experience to see the value of a comprehensive set of
tests so they are less disposed to testing than they should
be.

Refactoring
Only small amounts of refactoring were achieved. This
seemed to be due to lack of time bought on by the need to
complete an iteration and lack of experience in seeing
good designs. Unfortunately, students don't have enough
knowledge to do this effectively early in their career. In
addition it is difficult for less experienced people to see the
value of refactoring until they have had the experience of
having to modify complex unfactored code.

Continuous Integration
The project did not achieve anything like the continuous
integration required in XP. This regrettably was a failure,
primarily on my part, as we didn't use a configuration
management tool, but also because there was an element of
competition between the students as the results of their
work would be assessed for their final marks.
Consequently, there was a reluctance to share and
integrate code. In fact the problem became so severe that
students worked on their own towards the end.

Collective Ownership
Due to problems concerning ownership of code for
examination purposes there was very little collective
ownership of code. I guess it is one of the unfortunate
aspects of modern education that students must succeed for
themselves. This attitude extends into work after
graduation making collective ownership of code or
working in a team more difficult to establish. It is a pity
that sharing and co-operation are difficult to teach and

3

encourage in a competitive educational environment.

Pair Programming
None of the students really took to pair programming, one
of the more psychologically challenging aspects of XP.
Part of the problem was personality clashes, but also exam
orientated competition (see Continuous Integration above)
and the fear of looking like a fool in front of colleagues.
Unfortunately, unless you've had the misfortune to struggle
at length with a problem and then seen how quickly a
problem can be solved by discussing it with someone else
it is difficult to persuade less experienced students to see
the value of this practice.

40-hour Week
Not surprisingly this was followed reasonably closely.

On-Site Customer
One major failing was the lack of on-site customer.
Unfortunately I had other projects to do and could not
spend enough time on site as I should have. I knew this
was going to happen so I set up a Wiki [13] to collect the
user stories and log any issues. We also used the Wiki for
iteration planning. To a small degree the Wiki together
with email compensated for the lack of on-site customer,
but only partially, as questions requiring an immediate
response were delayed, issues weren't logged in the Wiki
and the communication constraints allowed the wrong
coding assumptions to be made.

Coding Standards
Sun's Java coding standards were adopted but interestingly
some of the students could not see the value in consistent
naming and layout. Once again lack of experience on
larger projects made this practice less used than it should
have been.

4 CONCLUSIONS
Teaching XP should be relatively easy in a university
environment. The students are intelligent and keen to
learn. However, there is more to learning XP than sitting
in a lecture and learning some facts. It is more important
that students come away with an understanding of why XP
works. This understanding does not come easily as it
requires plenty of practice and experience against which to
compare XP.

Practice is relatively easy to organise, but experience is
harder to obtain.

The practice should be a significant project lasting 6-8
weeks rather than a few hours. It is essential the practice is
supported with mentoring as it is very easy to loose sight
of the method when you are facing challenging
programming problems. Finding suitable mentors is not
easy given constraints on University budgets.

Ideally the practice should be as close as possible to an
industrial environment with a team approach rather than
the individualistic environment enforced by examinations

and grades. The practice should also be free from
"technology fight". That is figuring out how to use a
technology rather than creating useful software. In this
respect the practical environment needs to be carefully
prepared.

Obtaining the necessary experience to judge XP can take
years so unfortunately, as with other methods taught at
universities, the benefits must be learnt to some extent
rather than appreciated through experience. In fact it can
be argued that XP cannot be properly appreciated until
you've suffered the pain of alternative heavy weight
methods or indeed no methods at all. In other words "no
pain, no XP".

ACKNOWLEDGMENTS
I'd like to thank the Brighton University students involved
in the project and their professors who also became
students. In particular I'd like to thank Garth Glynn from
Brighton University who supported this project.

REFERENCES
1. Beck. K. Extreme Programming Explained – Embrace

Change, Addison-Wesley, 1999.

2. Castor object relational mapping tool. On-line at
http://castor.exolab.org/.

3. HttpUnit web page unit testing tool. On-line at
 http://httpunit.sourceforge.net/

4. Java Server Pages (JSP). On-line at
http://java.sun.com/products/jsp/index.html

5. Java Servlets. On-line at
http://java.sun.com/products/servlet/index.html

6. JBuilder interactive development environment. On-line
at
http://www.borland.com/jbuilder .

7. Jeffries R., Anderson A., Hendrickson C., Extreme
Programming Installed, Addison-Wesley, 2001.

8. JUnit Java unit testing tool. On-line at
http://www.junit.org/.

9. MySQL. On-line at
http://www.mysql.com/.

10. Struts Model View Control Java Servlet library. On-
line at
http://jakarta.apache.org/struts/index.html

11. Tomcat web server and servlet / JSP engine. On-line at
http://jakarata.apache.org/tomcat/index.html

12. Mackinnon T., Freeman S., Craig P. Endo-Testing:
Unit Testing with Mock Objects, Proceedings XP2000,
2000.

13. Wiki respository for storing free text. On-line at
http://www.c2.com/cgi/wiki?

4

