
Assessing Agility

Dr Peter Lappo, Henry C.T. Andrew

Systematic Methods Research Ltd
Greylands House, Mallory Rd, Hove, BN3 6TD, UK

peter.lappo@smr.co.uk,
Box River Ltd

Greylands House, Mallory Rd, Hove, BN3 6TD, UK
henry_andrew@yahoo.com

Abstract. A technique is described that uses goals to assess the agility of soft-
ware development teams and shows how it can be used with some examples.
The agile assessment can be used to make investment decisions and process
alterations. Value stream mapping is seen as an important technique in analys-
ing processes.

Keywords. Agile Goals, Assessment Technique, Value Stream Mapping, Net
Benefit, Measuring Agility

1 Introduction

There seems to be a general feeling in the agile community that if you follow all the
practices associated with your chosen method then you are by definition agile. While
this may be true of agile methods such as XP [1] or Scrum [2] which have defined a
set of practices that have emergent properties such that the team becomes agile as a
result of the process. It is still possible to use XP or Scrum without gaining much in
terms of agility.

There is much talk in the agile community of improving the software development
process but most of the improvements are anecdotal. There have been attempts at
measuring and proving the efficacy of agile software development methods versus
traditional methods [3, 4]. These studies have shown that agile methods are at least
as good as traditional methods. There is even some talk of metrics [5, 6] which some
people unfortunately frown upon [7] because of the political connotations, but never-
theless metrics don't measure how agile you are. Williams et al [5] proposed an in-
teresting set of agile metrics, but the metrics defined where not formalised.

This paper defines a technique to assess agility through goals and using some ex-
amples shows how to create agile goals. The technique won't compare you with other
people, at least not directly, rather it is a means to measure your relative perform-
ance.

1.1 Comparative Studies Between Traditional And Agile Methods

Comparative studies [3, 4] between traditional and agile methods are very difficult to
do on a small scale because it is very hard to devise a controlled experiment that any-
one trained in the theory of science can qualify as a valid scientific experiment. The
problem is small scale studies are not repeatable primarily due to the human ele-
ment.

The repeatability problem only disappears when large numbers of projects are
compared and statistical techniques are used to correlate process features with out-
comes. However, at this moment in time there is not enough data available to prove
that agile methods are better than traditional methods. Although anecdotal evidence
suggests that agile methods are more effective at delivering working solutions.

1.2 Relative Comparisons

The only practical way of determining whether agile methods actually make a differ-
ence to your software development process is by measuring your own process and
seeing whether agile methods actually make a difference. The question is how to
make the measurements and what to measure. Once these questions have been an-
swered it is possible to have some clarity about what makes a difference in your envi-
ronment.

While it is possible to use the technique proposed in this paper to compare your-
self with other teams it is difficult as often you are not comparing like with like.
However, other peoples performances are useful as a guide to what can be achieved.

1.3 Metrics Versus Measurable Goals

There is a large body of work concerning software metrics. Most of this work is use-
ful for the long term analysis of trends and comparative studies. Metrics are some-
times used during planning and bidding. However, metrics are not much use for as-
sessing agility. This paper won't concern itself much with metrics as it is the belief of
the author that most metrics are measuring artifacts of the process such as lines of
code or code complexity.

Most environments the author has worked in collect some sort of metrics even if it
is only hours spent on project tasks, requirements tested or defect rates. While these
may be useful, especially the last two, the collection of hours on tasks is often a fan-
tasy of the developer or manipulated by political necessities.

Rather than just gather metrics such as lines of code, code complexity, function
point or quality metrics we need measurements that are related to business needs
with an agile perspective. For instance, while code complexity analysis tells you how
complex your code, it does not give you any idea whether this code is easy to change
in practice and hence having the potential to be agile. You may also have code that is
not complex, but you still may have difficulty being agile because of your process or
because of the attitude or experience of the people working on the project. The point

being that low level measurements of process artifacts don't necessarily mean any-
thing at a higher process level.

Using the measurable goals described below it is possible to define a set of goals
for your team that are directly related to agile principles such as frequent delivery of
software. Goals differ from metrics principally in that they attempt to be free from
the details of the process, so that a goal to be responsive to change, for example,
doesn't care about metrics like lines of code or code complexity. The other reason to
differentiate goals from metrics is because a goal implies thought about where you
want to be rather than where you are now.

2 Technique for Defining and Achieving Goals

2.1 Goal Setting and Implementation

We simply define a set of measurable goals (see 2.3 below) for the process, environ-
ment, tools and software quality in conjunction with the project stakeholders (this in-
cludes developers). Then we determine what the current state of these goals are,
agree a future value with the project stakeholders, and takes steps to achieve the
agreed values.

The process of achieving the goals should of course be iterative, with regular re-
views on progress and the goals themselves. The cost and benefit of change should
also be considered thereby preventing over or under investment. You may of couse
find that you are sufficiently agile using your current process.

The goals, ideally, should be method agnostic, that is, we shouldn't define goals in
terms of particular practices used to achieve agility or in terms of the artifacts of the
process as this will stop method innovation and cause a lot of argument about fa-
vourite best practices. But it should be possible to assess a particular practice in
terms of the impact it has on agility. This however, this is beyond the scope of this
paper.

2.2 Techniques for Achieving Goals

Numerous management techniques exist for improving processes, but perhaps the
most interesting one to use at an early stage when you are investigating possible im-
provements is value stream mapping [8] as used by the lean community.

Value stream mapping produces a timeline for a complete process and determines
those steps which add value to the process. Subsequent work entails eliminating
steps that don't add value and eliminating process delays.

For example, the production release process is always an interesting process to ex-
amine. It may have a number steps that cause unreasonable delays which could easily
be eliminated or automated.

2.3 Categorisation of Goals

It is useful to categorise goals to help define them and focus the mind on what goals
are necessary. This paper proposes four categories as follows.

Process
Goals associated with the software development process and the process practices
used.

Environment
Goals associated with the environment the process runs in. These are mainly organ-
isational and people oriented goals.

Tools
Goals associated with the tools used to develop the software.

Software
These are goals associated with the design and quality of the software. How the soft-
ware has been designed can have a big impact on agility and of course if the software
is full of bugs or only manual testing is performed then again agility will be con-
strained.

2.4 Goal Definition

Goals are defined using the technique described by Gilb [9] and are described by the
following attributes.

Name
Test
Benchmark
Now
Worst
Planned
Net Benefit
Planned Date
Owner
Notes

These are detailed as follows.

Name
This a short name for the goal to make it easy to remember and discuss. It is also
used for cross referencing to other goals. For example, “Rate Of Change”. Names
are preferred over numbers as they are easier to remember and have more meaning.

However, some people prefer to use numbers. We don't care what convention you use
as long as it works.

Test
The goal needs to be measured in some way. This defines the test to measure the
goal and its scale. The test is the most important parts of defining a goal.

Tests should be quantitative when possible, but it is appreciated that some things
are difficult to measure, such as knowledge transfer, so qualitative assessments can
be used.

For example, “Rate Of Change” could be measured by running a query on your
change management system to determine how many changes have been released to
production over a given period. The scale could be changes per month.

Benchmark
This is an actual measurement taken in the field. It could be data from within your
own organisation but is more likely to be a measure taken from the best organisation
in your line of business. In other words, it is the benchmark to compare yourselves
against. This field is optional as the data may not be available or you have taken the
“lean” approach [10] which is to strive for perfection and ignore benchmarks. How-
ever, you may find some data which is relevant to your situation.

Now
Now simply states what the current measurement is. For example, for the “Rate Of
Change” goal could be 1 change released per month. This field is optional if data is
unavailable. However, we don't recommend this because you won't know if you are
making progress, so a rough guess is better than no data at all.

Worst
It is recognised that some goals may be difficult to achieve so this defines the lowest
expected improvement in the goal. For example, the “Rate Of Change” goal could
have a worst case improvement of 2 changes per month.

Planned
This is the planned level of the goal. For example, the “Rate Of Change” goal could
have a planned value of 20 changes per month.

Planned Date
The planned date defines when you expect to achieve your planned or worst case
goal.

Net Benefit
We'd rather you didn't implement any change to your organisation unless you have
some idea of the net benefit of the goal. Where net benefit is the potential value of
the goal minus its implementation cost.

Value is a difficult thing to define and measure and even more difficult to predict.
It also dangerous as you may oversell the benefit of a goal and raise expectations too
high. Some goals may have intangible values. In this case simply list the benefits and
costs.

The cost of course is only an estimate as it is difficult to predict what the costs will
be as you may incur unexpected costs. For instance, your new environment may not
be suitable for some people and they may leave, forcing you to replace them and
train their replacements.

You may find that some goals don't add much value or the cost of achieving the
goal is prohibitive in which case the goal should be dropped. The net benefit serves
as a means of checking whether its worth implementing this goal.

While this attribute is optional we recommend you attempt to quantify the benefits
to your organisation. If nothing else it will help you justify what you are trying to
achieve. One surprising result may be that the goal may cost virtually nothing. For
example, implementing a daily build may simply require an entry into a Unix cron
table, which, assuming you have you have the correct environment, may only take 10
minutes to implement.

For example, the “Rate Of Change” goal may bring the following intangible bene-
fit: Ability to implement changes that previously had to be ignored because they
weren't of a sufficiently high priority.

Owner
All goals must be owned by someone or if you prefer sponsored by someone, prefera-
bly this person should be in the management team or it could a steering committee.
The owner is responsible for ensuring the goal is achieved but not necessarily imple-
menting the goal, as this may be carried out by someone else.

Notes
This is simply further notes of explanation which can include a reference to further
information that may be relevant. It is optional.

3 Agile Goals

This paper hasn't the space available to define a set of goals for a team as goals are
dependent on business objectives and available investment so we shall just present a
few sample goals to give you an idea of how to define them for yourselves.

3.1 Example Goals

If you read the agile manifesto one of its principles is to value working software over
artifacts such as documentation. This leads us directly into the most obvious goals
for your agile team, the Frequent Delivery Of Working Software. Of course your
current process may be incapable of delivering this so you may set yourself another

goal which could be Quick Releases, i.e. the ability to integrate, build and release
your software in a timely manner.

On the environmental front you know key application knowledge is in the heads
of a two or three individuals which is preventing the rest of the team from being pro-
ductive, so you define a goal to Share Knowledge. How you do this is irrelevant to
the goal, but some means of measuring is not be.

The tools you use are of course perfect and you are perfectly happy with vi (or so
you think), so you don't define any tool goals. On the other hand you don't actually
get your hands dirty with code, but when you hold a review with the project stake-
holders your developers come up with their own goals, namely Refactoring Support
as they know they are steadily creating an unmaintainable mess.

When it comes to the actual software you do know you have trouble, but you are
convinced the QA testers are a bunch of slackers. Surely they didn't mean four weeks
to regression test the system for such as small change? Automated Acceptance
Testing seems the only way forward.

3.2 Formalised Goals

Rather than attempt to squeeze all the goals and their attributes on a single table
we'll just look at a couple.

Name Frequent Delivery Of Working Software
Test Record the date when software is released to pre-production on a

graph and measure the number of working days between each re-
lease measured in frequency in days.

Benchmark 10
Now 90
Worst 20
Planned 10
Planned Date June 2004
Net Benefit Each piece of automation will reduce the manual effort in process-

ing the invoices and provide valuable feedback on how the users
are adapting to the software and whether the software is meeting
business needs. Reducing the delivery cycle to 10 days will require
a large investment in test automation amongst other things. The
expected net benefit is difficult to determine as it depends on the
value of the changes being introduced at each cycle. However, if
the system goes into operation earlier the company will start get-
ting a return on its investment sooner.

Owner Director of IT
Notes None.

Name Share Knowledge
Test Amount of time spent pair programming in minutes per hour pre

day.
Benchmark unknown

Now 0
Worst 30
Planned 50
Planned Date June 2004
Net Benefit The team should be more productive as a whole as less experienced

members won't have to waste time finding out things for them-
selves. Some reduction in key personnel productivity is expected.
The actual net benefit is difficult to quantify.

Owner Team Leader
Notes This is difficult goal to measure and it is possible it should be di-

vided into sub-goals.

4 Conclusion

With a little thought it is possible to define a number of measurable goals which will
help you achieve greater agility, where of course agility is defined by your goals! Any
number of management techniques can be used to achieve your goals with value
stream mapping being particularly useful during analysis.

No longer will you have sleepless nights worrying whether you are doing all the
recommended XP practices in order to be agile (whatever they are at the time). If
your agile goals satisfy the project stakeholders then you are agile. You can of course
look around and see what kind of agility scores your competitors are achieving and
attempt to better them or you could take the lean approach [10] and simply aim to be
the best.

The point is by measuring what you are doing and setting goals for the future you
have an opportunity to achieve those goals. Without objective measurements you are
in the same state as early philosophers that conjectured about our universe. You are
guessing.

References

1 Kent Beck . Extreme Programming Explained – Embrace Change, Addison-Wesley, (1999)
2 Ken Schwaber. The Scrum Development Process (OOPSLA'95 Workshop on Business Ob-

ject Design and Implementation (1995)
3 John Noll and Darren C. Atkinson. Comparing Extreme Programming to Traditional De-

velopment for Student Projects: A Case Study. In Proceedings of the 4th International Con-
ference of Extreme Programming and Agile Processes in Software Engineering, May 2003.

4 Francisco Macias, Mike Holcombe, Marian Gheorghe. A Formal Experiment Comparing
Extreme Programming with Traditional Software Construction. In Proceedings of the
Fourth Mexican International Conference on Computer Science September (2003)

5 L. Williams, G. Succi, M. Stefanovic, M. Marchesi. A Metric Suite for Evaluating the Ef-
fectiveness of an Agile Methodology. In Extreme Programming Perspectives. Addison
Wesley (2003)

6 William Krebs, Laurie Williams, Lucas Layman. IBM / NC State University XP Study
Metrics. Workshop submission to XP Agile Universe, http://sern.ucalgary.ca/eeap/wp/bk-
position-2003.html (2003)

7 Tim Bacon, Steering With Numbers. XDay
http://xpday3.xpday.org/slides/SteeringWithNumbers.pdf (2003)

8 Mike Rother and John Shook, Learning to See. Lean Enterprise Institute (1998)
9 Tom Gilb. Principles of Software Engineering Management. P133-158, Addison-Wesley,

(1988)
10 James Womack and Daniel Jones. Lean Thinking: Banish Waste and Create Wealth in

Your Corporation, Revised and Updated, Free Press (2003)

